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Although most of the real networks contain a mixture of directed and bidirectional �reciprocal� connections,
the reciprocity r has received little attention as a subject of theoretical understanding. We study the expected
reciprocity of networks with arbitrary input and output degree sequences and given 2-node degree correlations
by means of statistical ensemble approach. We demonstrate that degree correlations are crucial to understand
the reciprocity in real networks and a hierarchy of correlation contributions to r is revealed. Numerical
experiments using network randomization methods show very good agreement to our analytical estimations.
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I. INTRODUCTION

Most of the real networks combine both unidirectional
and bidirectional �reciprocal� connections. This directed na-
ture is often obviated, e.g., networks are symmetrized for
algorithmic convenience and network models largely ignore
the directionality for analytical simplicity. However, the di-
rectionality is known to be relevant, e.g., robustness against
environmental changes of metabolic networks seems to arise
from evolutionary pressure on the directions and weights of
the metabolic fluxes �1�. The formation of functional com-
munities and hierarchies in the cerebral cortex is mediated by
the presence of reciprocal and unidirectional connections �2�.
The dynamical stability in complex networks, e.g., ecologi-
cal systems �3,4� and synchronization of coupled oscillators,
is commonly assessed by the eigenvalue space of the Jaco-
bian or Laplacian matrices �5�. When networks are directed,
these matrices will have complex eigenvalues, which influ-
ences both the stability and the dynamical organization far
from the equilibrium state.

The network reciprocity r is classically defined as r= L↔

L
�6� where L↔ is the number of directed links s→ t that also
have a reciprocal �bidirectional� counterpart s← t, and L is
the total number of directed links. In networks without self-
loops, reciprocal links form the cycles of lowest order and
are therefore, important as a natural measure of feedback in
the network. Recently, r of the Wikipedia networks �29� �for
different languages� was found to be very stable over a wide
range of network sizes �7� which signals its relevance for the
structure or functionality of the networks. In �8� it was
shown that reciprocal connections carry most of the topo-
logical information of the world wide web. The formation of
the giant component in directed networks is facilitated by
reciprocal connections �9�. Despite the extensive modeling
efforts during the recent years to reproduce realistic features
of networks, models have largely ignored reciprocity. Only
in �10� a general class of random networks with prescribed r
has been presented.

When analyzing real networks it is important to test
whether measured values are significant or not. Usually, the

properties of a real network are compared to those of com-
plete random networks of the same size N and number of
links L. However, the degree distribution of most real net-
works largely differs from Poissonian, i.e., the degree distri-
bution of random graphs, and more reasonable comparison is
desired. Obtaining analytical expressions for expected mea-
sures under conditions of arbitrary degree sequence is diffi-
cult and further assumptions are typically introduced to de-
rive approximate estimations, e.g., scale-free �11� or
exponential degree distributions �12�. In real applications a
numerical approach is, most of the time, the only solution.
Ensembles of maximally random networks can be generated
with the same degree sequences and the ensemble average
properties can be calculated. Unfortunately, this is often
computationally very demanding. In this paper we present
analytical expressions for the expected reciprocity of di-
rected networks that can be evaluated using only information
measured from the real network under study, and thus, over-
come the problems discussed above.

In the context of social networks, several redefinitions of
r have been introduced that account for biases of the experi-
mental conditions �6,13�. Recently, a similar redefinition
based on the correlation between the adjacency matrix and
its transpose has been presented �14�. It evaluates the reci-
procity with respect to the density of connections ā
=L / �N�N−1��. This results from the fact that in a random
digraph with N nodes and L links, r= ā. However, the spe-
cific degree sequence is expected to affect the number of
reciprocal links. A node with both large input degree ki and
large output degree ko has a higher tendency to form recip-
rocal links. This is expressed by the 1-node degree correla-
tions between ki and ko of individual nodes. Similarly, as r
involves the pairwise connectivity of nodes, the correlation
between the degrees of neighboring nodes, 2-node degree
correlations, should also be relevant. Imagine a link s→ t
connecting a source node s with input and output degrees
�ki ,ko� to a target node t with degrees �qi ,qo�. The 2-node
degree correlations exist when any of the �ki ,ko� degrees of
node s are correlated with any of the �qi ,qo� degrees of node
t. When all four values are correlated, then both 1-node �1n�
correlations and the 2-node 4-degree �2n4d� correlations are
present. The class of 2-node 2-degree �2n2d� correlations is
depicted in Fig. 1.*Corresponding author. vzlatic@irb.hr
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In this paper we study the expected reciprocity �r� of net-
works with prescribed degree sequences and arbitrary 2-node
degree correlations. We consider the complex networks as
members of the statistical ensemble with given node degree
sequence and degree correlations, and we calculate the ex-
pected reciprocity of such ensembles in the thermodynamical
limit �30�. We find that degree correlations explain almost
completely the observed r of some real networks. In other
examples, larger discrepancies indicate the presence of addi-
tional internal structure.

II. GENERAL RESULTS

In order to analytically estimate �r� under different corre-
lation structures, we characterize the real directed networks
by: the number of nodes N, the number of links L, the num-
ber of nodes N�ki ,ko�=N�k� having in-degree ki and out-
degree ko, and the number of directed links L�k→q� pointing
from nodes with degrees �ki ,ko� to nodes with degrees
�qi ,qo�. All these properties are easy to measure in a real
directed network and contain all the relevant information
about the degree correlations. We use frequencies of these
properties as their probabilities and calculate the expected
number of reciprocal links �L↔�. We remind the reader that
by definition, �r� is related to �L↔� by �r�= �L↔� /L.

Under the class of 1-node and 2-node degree correlations
here assumed, a network is considered as maximally random
when any of the nodes with degrees k are equally likely
connected to any of the nodes with degrees q. If a network
contains L�k→q� links of the type k→q, the probability that
any of them connects a pair of randomly chosen nodes with
degrees k and q is, in the thermodynamical limit,

p�k → q� =
L�k → q�
N�k�N�q�

. �1�

The denominator N�k�N�q� is the number of all possible con-
nections between nodes with degrees k and nodes with de-
grees q.

Again, if the network has L�k→q� links of the type
k→q, then the expected number of reciprocal k↔q links is
�L�k↔q��=L�k→q�p�k←q�. The overall expected reci-
procity r1n2n of the network is obtained by summing
�L�k↔q�� over all k, q combinations,

r1n2n =
1

L
�
k,q

L�k → q�L�k ← q�
N�k�N�q�

. �2�

Note that in general L�k→q��L�k←q�. Taking frequencies
of nodes P�k�=N�k� /N and frequencies of links P�k→q�
=L�k→q� /L as probabilities in the thermodynamical limit,
Eq. �2� reads as

r1n2n =
L

N2�
k,q

P�k → q�P�k ← q�
P�k�P�q�

. �3�

The contribution of the correlation structure is accounted by
the sum, P�k→q� accounts for both 1-node and 2-node
correlations, and P�k� only for the 1-node correlations.
When all four degrees are independent P�k→q�
= P�ki�koP�ko�qiP�qi�P�qo� / �k�2 where �k�=L /N is the aver-
age degree and P�k�= P�ki�P�ko�. Then reciprocity reduces to
the density of links L /N2, i.e., the expected reciprocity of
uncorrelated random networks.

III. SPECIAL CORRELATION CLASSES

Equations �2� and �3� are general formulas that account
for all 1-node and 2-node degree correlations. These equa-
tions can be reduced to consider only desired special classes
of correlations and thus explore the contribution of indi-
vidual correlation types to r. In this section we present de-
tailed derivations for all eight possible combinations of
1-node and 2-node correlations and in Table I the main re-
sults are summarized. Note that in Table I only rc, the con-
tribution of the correlation structure is shown. The expected
reciprocities are obtained by multiplying with the density of
links �r�= L

N2 rc. Along this section, the usual product rule of
joint probabilities in terms of conditional probabilities will
be used,

P�X1,X2, . . . ,Xn� = P�X1�P�X2�X1�P�Xn�X1,X2, . . . ,Xn−1� .

With this rule in mind, the joint probabilities associated with
the link statistics P�k→q�	 p�ki ,ko ,qi ,qo� can be ex-
pressed, for example, as

P�k → q� = P�ko → qi�P�ki�ko → qi�P�qo�ko → qi,ki� .

A. 2-node output/input degree correlations

Suppose that a network has significant 1-node correlations
and 2-node correlations only between the out-degree ko of
source nodes and the in-degree qi of the target nodes, see
Fig. 1�a�, while other possible 2-node correlations are negli-
gible. In this case, the probabilities can be approximated by

P�k → q� 
 P�ko → qi�P��ki�ko�P��qo�qi� ,

P�k ← q� 
 P�ko ← qi�P��ko�ki�P��qi�qo� .

Using conditional probabilities for the degrees of individual
nodes, e.g., P�ki �ko�= P�k� / P�ko�, Eq. �3� reduces to

FIG. 1. 2-node 2-degree correlations �2n2d� of neighboring
nodes in directed networks. Links corresponding to correlated de-
grees are colored black.

ZAMORA-LÓPEZ et al. PHYSICAL REVIEW E 77, 016106 �2008�

016106-2



r1n2n:o/i =
L

N2�
k,q

P�ko → qi�P�ki ← qo�P�k�P�q�
P�ki�P�ko�P�qi�P�qo�

. �4�

Additionally, if the 1-node correlations are negligible, the
degrees of individual nodes become independent: P�k�
= P�ki ,ko�= P�ki�P�ko�. Then Eq. �4� becomes

r2n:o/i =
L

N2�
k,q

P�ko → qi�P�ki ← qo� =
L

N2 , �5�

that equals the density of connections ā in the thermody-
namical limit. This means that the 2-node output/input de-
gree correlations do not contribute to reciprocity in the ab-
sence of 1-node correlations. This is not a general case since
other classes of 2-node correlations largely contribute to r.

B. 1-node degree correlations

Starting from Eq. �4�, we can alternatively remove the
remaining 2-node input/output degree correlations and obtain
a general expression for the expected reciprocity r1n due to

the 1-node correlations alone. In this case, the number of all
possible output connections from source nodes with degree
ko is koN�ko� and the number of all possible input connec-
tions to target nodes with in-degree qi is qiN�qi�. Hence, the
probability that one link connects a node with out-degree

ko to a node with in-degree qi is P�ko→qi�=
koN�ko�

L

qiN�qi�

L

=
koP�ko�qiP�qi�

�k�2 . Equation �4� reduces to

r1n =
L

N2

�kiko�2

�k�4 . �6�

Here r, a 2-node property, is determined by the single-node
characteristics arising from the specific input and output de-
gree sequences. We remind the reader that, in the literature, it
is common to randomize networks by methods that conserve
the degree sequences in order to obtain expected values ac-
counting for the real degree distribution. Equation �6� is of
relevance for significance testing because it is the theoretical
estimation of the expected reciprocity in such a typical case.

TABLE I. Reduced formulas for the expected reciprocity of different combinations of 1-node and 2-node
correlations. The expected reciprocity is �r�= L

N2 rc. Note that the result for the 2-node out-out and in-in
correlations are independent of the 1-node correlations.

1-node 2-node rc, contribution of the correlations

No No 1

Yes No
�kiko�2

�k�4

No Output/input 1

Yes Output/input �
k,q

P�ko → qi�P�ki ← qo�P�ki,ko�P�qi,qo�
P�ki�P�ko�P�qi�P�qo�

Yes and/or no Output/output �
ko,qo

P�ko → qo�P�ko ← qo�
P�ko�P�qo�

Yes and/or no Input/input �
ki,qi

P�ki → qi�P�ki ← qi�
P�ki�P�qi�

No Input/output
��kiqo�P�2

�k�4

a

Yes Input/output �
k,q

kikoqiqo

P�ki → qo�P�ko ← qi�P�ki,ko�P�qi,qo�

k̄i,ko
k̄o,ki

q̄i,qo
q̄o,qi

b

aThe averaging in the formulas is performed over in-degree of source nodes and the out-degree of the target
nodes.
bk̄o,ki

=�ko�
ko�P�ko� ,ki� and similar for all other averages of this type.
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C. 2-node output/output degree correlations

Following a similar approximation we can calculate the
expected reciprocity r2n:o/o due to the 2-node correlations,
Fig. 1�b�, between the output degree ko of the source node
and the output degree qo of the target node. However, in this
case a few steps need to be carefully considered. We rewrite
the link probabilities as

P�k → q� = P�ko → qo�P�ki�ko → qo�P�qi�ki,ko → qo� .

The term P�qi �ki ,ko→qo� introduces dependence of in-
degree of the target node qi on the in-degree of the source
node ki. We are assuming that such correlations are negli-
gible and therefore this term can be rewritten as P�qi �ko

→qo�. The second term, P�ki �ko→qo�, can be written as
P�ki �ko� because the in-degree of the target node qi and the
in-degree of the source node ki are, again, not correlated. To
proceed, it is necessary to use the fact that we are calculating
expectations on graphs, and that the final expression has a
form which can be calculated using only the assumed knowl-
edge of the network structure, i.e., the frequencies of nodes
P�k�=N�k� /N and the frequencies of links P�k→q�=L�k
→q� /L. Following this line of reasoning the third, already
approximated term, should be carefully rewritten. What is
the probability that a node will have in-degree qi given that
�i� it has an input link and �ii� it has an out-degree qo? With-
out the information �i� this probability is simply P��qi�qo�,
but we have information that such a link does exist. The
probability that, following a link between nodes with degrees
ko and qo, it will run into a node with in-degree qi is just the
number of links L�→q� which enter all nodes with degrees q
divided by the number of all links L�→qo� that enter the
nodes with out-degree qo. These numbers of links can be
expressed as qiN�qi ,qo� and �qi�

qi�N�qi� ,qo�, respectively.
Thus,

P�qi�ko → qo� =
qiN�qi,qo�

�
qi�

qi�N�qi�,qo�
=

qiP�qi,qo�

�
qi�

qi�P�qi�,qo�
.

Substituting all these approximations in Eq. �3�,

r2n:o/o =
L

N2�
k,q

P�ko → qo�P�ko ← qo�kiP�k�qiP�q�

�
ki�,qi�

ki�P�ki�,ko�qi�P�qi�,qo�P�ko�P�qo�
.

Finally, the summation terms over in-degrees in the numera-
tor and the denominator cancel out and we obtain a final
expression for the expected reciprocity under 2-node output/
output degree correlations,

r2n:o/o =
L

N2 �
ko,qo

P�ko → qo�P�ko ← qo�
P�ko�P�qo�

. �7�

Interestingly, this expression is independent of the 1-node
correlations even if we did not explicitly assume it. The ex-
pression for 2-node input/input correlations conserved, Fig.
1�c�, is the same only with ko and qo replaced by ki and qi,
see Table I.

D. 2-node input/output degree correlations

We now describe the case in which significant in-out cor-
relations, Fig. 1�d�, are present in the network. Such correla-
tions are supposed to influence reciprocity considerably be-
cause the probability that a given link of the type k→q has a
reciprocal counterpart k←q is directly proportional to the
in-degree ki of the source node and the out-degree qo of the
target node. Following the previous line of reasoning, the
link probability can be expressed in this case as

P�k → q� = P�ki → qo�P�ko�ki → qo�P�qi�ki → qo,ko� ,

and the conditional terms as

P�ko�ki → qo� =
koN�ko,ki�

�
ko�

ko�N�ko�,ki�
=

koP�ko,ki�

�
ko�

ko�P�ko�,ki�
=

koP�ko,ki�

k̄o,ki

,

P�qi�ki → qo� =
qiN�qo,qi�

�
qi�

qi�N�qo,qi��
=

qiP�qo,qi�

�
qi�

qi�P�qo,qi��

=
qiP�qo,qi�

q̄i,qo

.

Note that the expression k̄o,ki
=�ko�

ko�P�ko� ,ki� is not the aver-
age out-degree of nodes with in-degree ki, because P�ko� ,ki�
is the joint probability and not the conditional probability.
The average out-degree of nodes with in-degree ki is �ko�ki

=
k̄o,ki

P�ki�
. Using the above relationships we obtain from Eq. �3�

an expression for the expected reciprocity r1n2n:i/o=ri/o due to
1-node and 2-node input/output degree correlations,

ri/o =
L

N2�
k,q

kikoqiqoP�ki → qo�P�ko ← qi�P�k�P�q�

k̄i,ko
k̄o,ki

q̄i,qo
q̄o,qi

. �8�

Additionally, if the 1-node correlations are removed, the ex-
pected reciprocity r2n:i/o due to the 2-node input/output de-
gree correlations alone is

r2n:i/o =
L

N2�
k,q

kikoqiqoP�ki → qo�P�ko ← qi�
�ko�ki

�ki�ko
�qo�qi

�qi�qo

=
L2

N2

�kiqo�2

�ki�4 .

�9�

Note that without 1-node correlations �ko�ki
=�ko�

�ko�P�ko� ,ki� / P�ki��= �ko�.

IV. APPLICATION TO REAL NETWORKS

The class of degree correlations chosen in this paper is not
only very interesting from the theoretical point of view, it is
also of practical relevance. In this section, first, our results
are applied to several real networks and the impact of degree
correlations on reciprocity is discussed. Second, in order to
prove the validity of our equations, the theoretical estima-
tions are compared to empirical ensemble averages of proper
random networks. Therefore, we present algorithms to gen-
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erate random networks conditional on different correlation
classes.

A. Reciprocity of real networks

All the analytical expressions summarized in Table I can
be directly estimated by measuring the necessary statistics
out of a real network. For the distinct correlation classes,
different quantities are counted: N�ki�, N�ko�, N�k� or L�ko

→qi�, L�ki→qo�, L�k→q�, etc. Then, the frequencies P�k
→q�=L�k→q� /L, P�ki�=N�ki� /N, etc., are introduced in the
formulas to calculate the expected reciprocity.

For all the real networks in Table II we have calculated
the expected reciprocities after Eqs. �3� and �5�–�7�. For
comparison, we also show the density of connections ā, i.e.,
the reciprocity of uncorrelated random networks of the same
size N and the same number of links L. As observed in Table
II the general estimation r1n2n alone can almost completely
explain the real r of many networks, e.g., world trade webs
and most of the food webs. It also makes a very good ap-
proximation for cortical and neural networks. The large dis-
crepancy in the case of Wikipedia websites suggests the pres-
ence of additional internal structure apart from the 1-node
and 2-node degree correlations. For example, the C. elegans
neural network, the cortical networks, and the Wikipedias are
known to have modular and hierarchical structure. In all of
these cases the real r is larger than the expected r1n2n. Nev-
ertheless, our results demonstrate that degree correlations are
crucial to understand the reciprocity of real networks. The
expected r1n2n of the world trade webs is roughly 2 times as

large as ā, the expected reciprocity of an equivalent uncor-
related random network. In other cases r1n2n is up to 3 orders
of magnitude larger than ā.

The values of r1n2n are always followed by the contribu-
tion of 2-node output/output correlations r2n:o/o, Eq. �7�. With
the exception of Silwood Park and Ythan Estuary food webs,
values of r1n, Eq. �6�, are all closer to the real r than the
density of links ā. These results reveal a hierarchy of degree
correlation classes according to their contribution to reci-
procity.

B. Numerical corroboration

Finally, we prove in this section that our analytical ex-
pressions are valid expectation values of the network reci-
procity. Using the correlation structure of the real networks
in Table II, we have generated ensembles of maximally ran-
dom networks under different conditions of 1-node and
2-node degree correlations. The ensemble average reciproci-
ties have been compared to the analytical results showing
excellent agreement between experimental and theoretical
expected values, Fig. 2. The generation of random networks
with desired degrees and correlations is not trivial, but we
have developed three algorithms for that purpose. In the ab-
sence of analytical results for other graph measures, e.g.,
clustering coefficient, average path length, etc., the following
algorithms are useful tools to empirically calculate their ex-
pected values under desired conditions of degree correla-
tions.

TABLE II. Measured reciprocity r of several real networks, and theoretically expected reciprocities due to
different correlation structures. �i� 1-node and all 2-node correlations r1n2n. �ii� 2-node out-out r2n:o/o �no
1-node�. �iii� 1-node correlations r1n �no 2-node�. �iv� The density of connections ā.

Network r r1n2n r2n:o/o r1n ā

World trade webs �15�
Year 1948 0.823 0.812 0.768 0.707 0.382

Year 2000 0.980 0.958 0.883 0.813 0.560

Neural networks

C. elegans �16� 0.433 0.329 0.071 0.060 0.033

Cortical networks

Cat �17� 0.734 0.659 0.473 0.390 0.300

Macaque �18� 0.750 0.645 0.287 0.230 0.155

Food webs �19�
Little Rock Lake 0.0339 0.0323 0.0365 0.0501 0.0743

Grassland 0.0 0.0 0.0077 0.0079 0.0179

St. Marks Sea 0.0 0.0075 0.0500 0.0703 0.0948

St. Martin Island 0.0 0.0016 0.0419 0.06765 0.1131

Silwood Park 0.0 0.0 0.0002 0.0160 0.0155

Ythan Estuary 0.0034 0.0050 0.0335 0.0531 0.0330

Wikipedia �7�
Spanish 0.3517 0.1466 0.0322 0.0056 0.0004

Portuguese 0.3563 0.1207 0.0168 0.0084 0.0004

Chinese 0.3668 0.1556 0.0256 0.0096 0.0010
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1. Random networks with desired degree sequences and 2-node
degree correlations, r1n2n

Given a real network of size N and L links, we can mea-
sure its degree distribution N�k� and the 2-node correlation
structure L�k→q�. With this information in hand, it is pos-
sible to generate maximally random networks that possess
such properties. To an initially empty network of size N, its
nodes are randomly assigned their final degrees k following
the distribution N�k�. Then, links are introduced at random
but following carefully considered steps. First, one source
node s is chosen at random. We know that s has been as-
signed to have final degrees k�. Because of the 2-node cor-
relations, s can only connect to nodes with particular degrees
q� such that L�k�→q���0. A list of possible target nodes is
constructed by taking only those nodes assigned to have final
degrees q� where L�k�→q���0. From this list one target
node t is chosen at random and the link s→ t is introduced
into the initially empty network. Note that a node with de-
grees k= �ki ,ko� can only be chosen ko times as source and ki

time as target, otherwise the distribution N�k� will not be
conserved. Thus, if the quantities L�k→q�, and ki and ko of
each node are adequately updated during the process, only L
iterations are required to construct the maximally random
network. Described as it is, this method allows for the intro-
duction of self-loops and multiple links. Avoiding them is far
from trivial.

To prove the validity of our general theoretical result
r1n2n, Eq. �3�, ensembles of 100 random networks have been
generated. The results in Fig. 2�a� show an excellent agree-
ment between r1n2n �horizontal axis� and the empirical en-
semble average reciprocities �r1n2n� �vertical axis�. All of the
generated random realizations have been positively tested to
have the same N�k� and L�k→q� as the original real net-
works. Apart from the C. elegans, none of the real networks

here studied contain self-loops or multiple links. In the ran-
dom realizations out of the Silwood Park food web, on av-
erage, only 4.5% of the L links formed self-loops or multiple
links. The realizations out of the Wikipedias contain less than
2% of such links, and the realizations out of the cortical
networks and the world trade webs contain less than 1%. In
all cases the reciprocity was measured counting the multiple
links as a unique link and ignoring the self-loops. The small
fraction of nondesired links have very little impact as ob-
served in the excellent agreement between the theoretical
expectation r1n2n and the experimental ensemble averages
�r1n2n�, Fig. 2�a�.

2. Rewiring method that conserves 2-node output/output degree
correlations, r2n:oÕo

In this case, we opted for a rewiring algorithm. Such
methods start from a given real network and stepwise ran-
domize its connections by specific rules that conserve the
desired properties. In order to obtain maximally random net-
works that conserve uniquely the original 2-node output/
output degree correlations, Fig. 1�b�, we proceed in the fol-
lowing manner. One of the links in the network is chosen at
random s→ t1. Nodes s and t1 have out-degrees ko and qo,
respectively. From all the nodes in the network with out-
degree qo a new target node t2 is randomly chosen. If all
conditions to avoid the introduction of self-loops and mul-
tiple links are satisfied, the old link is destroyed sy t1 and
the new link s→ t2 is created.

After several iterations, all 2-node degree correlations are
randomized except for the output/output degree. A relevant
question arises when applying rewiring algorithms: how long
should the process run so that resulting networks are maxi-
mally random? After some finite number of iterations the
network reaches a state where any successive rewiring leads
to a statistically equivalent random network. Once this state
is reached, the network measures converge to their expected
value �20�. We have applied several levels of rewiring and
the reciprocity has been measured at each level. As observed
in Fig. 3�a� the ensemble average of r reaches a stable point.
Any other network measure follows the same behavior. Ob-
viously, the number of necessary iterations is proportional to
the number of links L and, for this particular method, all
networks reach a maximally random state after 2L iterations.
For security, 4L iterations are recommended.

FIG. 2. Numerical corroboration of theoretical estimations. Ex-
perimentally measured reciprocities �vertical axes� and our theoret-
ical estimations �horizontal axes�. �a� All 1-node and 2-node corre-
lations conserved. �b� Only 2-node out-out correlations conserved.
�c� Only 2-node out-in correlations. �d� 1-node correlations. All data
points are averages of 100 realizations. Food webs ���, C. elegans
���, world trade webs ���, cortical networks ���, and Wikipedias
���. Dashed lines are references of perfect coincidence.

FIG. 3. Stability of rewiring algorithms. With increasing number
of randomizing iterations structural properties reach stable values,
here r is shown. �a� Algorithm that conserves the 2-node output/
output degree correlations. �b� Algorithm that conserves the 2-node
output/input correlations. All data points are averages of 50 realiza-
tions. Error bars are very small. Food webs ���, C. elegans ���,
world trade webs ���, cortical networks ���.
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To prove the validity of our theoretical expression r2n:o/o
in Eq. �7�, e.g., the expected reciprocity of networks with
prescribed 2-node output/output degree correlations, we have
generated ensembles of 100 rewired networks out of the real
networks in Table II. The comparison between r2n:o/o and the
empirical ensemble averages �r2n:o/o� shows again excellent
agreement, Fig. 2�b�.

3. Rewiring method that conserves 2-node output/input degree
correlations, r2n:oÕi

We designed yet another rewiring algorithm that con-
serves uniquely the original 2-node output/input correlations,
Fig. 1�a�, of a real network. First, two nodes are selected at
random, s1 and s2. These nodes are divided in two halves,
one containing all in links and the other containing all the out
links, i.e., s1=s1

in�s1
out and s2=s2

in�s2
out. Then, the in-halves

and the out-halves are switched to form two new nodes, s3
=s1

in�s2
out and s4=s2

in�s1
out. Cases that would introduce self-

loops are carefully discarded. The resulting randomized net-
works conserve the in-degree N�ki� and the out-degree N�ko�
distributions, and the number of links L�ko→qi� from the
original network while the rest of correlations are random-
ized.

The stability of the rewiring process has been tested and
the results are shown in Fig. 3�b�. In this case, each iteration
step rewires several links so that the algorithm is much
faster. After only 0.3L iterations all networks reach a maxi-
mally random state. The theoretical expected reciprocity
r2n:o/i, Eq. �5�, is compared to the empirical ensemble aver-
ages �r2n:o/i� of 100 rewired networks and the results shown
in Fig. 2�c�. All networks were rewired 0.4L times.

4. Conserving degree sequences, r1n

Finally, a well-known rewiring method was used to ran-
domize all 2-node correlations while degree sequences are
conserved �21�. The method arises from earlier approaches
�22–24� and consists in randomly choosing two links,
s1→ t1 and s2→ t2, and exchanging them, s1→ t2 and
s2→ t1. In Fig. 2�d� the expected reciprocities �r1n� from the
ensemble averages are compared to our analytical estima-
tions r1n, Eq. �6�.

All of the results in this section prove that our analytical
expressions are valid expected reciprocities under the corre-
lation conditions considered in this paper. The equations are
valid even for small networks such as the cat cortical net-
work �N=53, density of links ā
0.3� despite the fact that
formulas are derived in the thermodynamical limit. Error
bars in most cases are very small and only food webs exhibit
some larger fluctuations.

V. SUMMARY AND DISCUSSION

In summary, we have studied the influence of 1-node and
2-node degree correlations on the reciprocity of networks

with arbitrary degree sequence. We find that degree correla-
tions account for a very large part of the observed reciproc-
ity, explaining it almost completely in typical cases. The
level of contribution to r is nontrivial and largely depends on
the type of correlations involved, revealing a hierarchy of
correlation classes. As observed, these contributions can span
over orders of magnitude. Our analytical estimations are
proved as valid expectation values of reciprocity by compari-
son to ensemble averages of random networks which pre-
serve desired correlation structure. Both from a theoretical
and a practical point of view, it would be highly desirable to
extend the current work and obtain expected values of other
network measures, e.g., clustering coefficient, average path
length, motif profiles, etc., following a similar philosophy:
the analytical expressions should be computable using only
information directly measured from the real network under
study. In the absence of such results the numerical methods
introduced in this paper are useful tools for obtaining expec-
tation values under conditions of prescribed degree se-
quences and degree correlations.

The dynamical influence of degree correlations has been
studied for epidemic spreading �25� and for synchronization
in undirected networks �26�. In the light of our results, which
clearly relate reciprocity and degree correlations, it is impor-
tant to also investigate the influence of reciprocity on those
phenomena for the broader class of directed networks.

In order to perform satisfactory modeling, the key param-
eters governing network growth and evolution need to be
identified. Therefore, theoretical understanding of the inter-
play between different topological properties is necessary to
distinguish between the significant measured values and
those expected as by-products of other properties. In this
paper, we have explored the interplay between degree corre-
lations and network reciprocity. Previous efforts in this di-
rection include relations between degree correlations and
clustering coefficient in undirected graphs �27,28�. Degree
correlations are also expected to be relevant for other net-
work measures, e.g., path length, network motifs, modularity,
etc. Therefore, further work is desirable to extend the ana-
lytical and experimental approaches presented here. No
doubt, quantification of similar structural interrelations will
significantly elucidate the essence of the structure-function-
evolution interplay in complex networks.
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